

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Falco: FastQC Alternative Code

[![GitHub Downloads](https://img.shields.io/github/downloads/smithlabcode/falco/total.svg?style=social&logo=github&label=Download)](https://github.com/smithlabcode/falco/releases/latest)
[![DOI](https://zenodo.org/badge/214499063.svg)](https://zenodo.org/badge/latestdoi/214499063)
[![Install on conda](https://anaconda.org/bioconda/falco/badges/platforms.svg)](https://anaconda.org/bioconda/falco)
[![Install on conda](https://anaconda.org/bioconda/falco/badges/license.svg)](https://anaconda.org/bioconda/falco)
[![Install on conda](https://img.shields.io/conda/dn/bioconda/falco?color=red&label=conda%20downloads&style=flat-square)](https://anaconda.org/bioconda/falco)

This program is an emulation of the popular
[FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc)
software to check large sequencing reads for common problems.

Installing falco

Installing through conda
If you use [anaconda](https://anaconda.org) to manage your packages,
and the conda binary is in your path, you can install the most
recent release of falco by running
`
$ conda install -c bioconda falco
`

falco can be found inside the bin directory of your anaconda
installer.

Installing from source (code release)

Compilation from source can be done by downloading a falco release
from the [releases](https://github.com/smithlabcode/falco/releases)
section above. Upon downloading the release (in .tar.gz or .zip
format), and inflating the downloaded file to a directory
(e.g. falco), move to the target directory the file was inflated
(e.g. cd falco). You should see a configure file in it. In this
directory, run

`
$./configure CXXFLAGS="-O3 -Wall"
$ make all
$ make install
`
if you wish to install the falco binaries on a specific directory, you can use
the –prefix argument when running ./configure, for instance:

`
$./configure CXXFLAGS="-O3 -Wall" --prefix=/path/to/installation/directory
`

The falco binary will be found in the bin directory inside the
specified prefix.

Installing from a cloned repository

We strongly recommend using falco through stable releases as
described above, as the latest commits might contain undocumented
bugs. For the more advanced users who wish to test the most recent
code, falco can be installed by first cloning the repository

`
$ git clone https://github.com/smithlabcode/falco.git
$ cd falco
`

Once inside the generated repsotory directory, run
`
$ make all
$ make install
`

This should create a bin directory inside the cloned repository
containing falco.

Required C++ dependencies

[zlib](https://zlib.net) is required to read gzip compressed FASTQ
files. It is usually installed by default in most UNIX computers and
is part of the htslib setup, but it can also be installed with
standard package managers like apt, brew or conda.

On Ubuntu, zlib C++ libraries can be installed with apt:
`
$ sudo apt install zlib1g zlib1g-dev
`

Optional C++ dependencies

[htslib](https://github.com/samtools/htslib) is required to process
bam files. If not provided, bam files will be treated as unrecognized
file formats.

If htslib is installed, falco can be compiled with it by simply replacing the
configure command above with the –enable-hts flag:

`
$./configure CXXFLAGS="-O3 -Wall" --enable-hts
`

If falco was cloned from the repository, run the following commands
to allow BAM file reading:

`
$ make HAVE_HTSLIB=1 all
$ make HAVE_HTSLIB=1 install
`

If successfully compiled, falco can be used in BAM files the same way as it is
used with fastq and sam files.

Running falco

Run falco in with the following command, where the example.fq file
provided can be replaced with the path to any FASTQ file you want to run
falco
`
$ falco example.fq
`

This will generate three files in the same directory as the input fastq file:

	fastqc_data.txt is a text file with a summary of the QC metrics

	
	fastqc_report.html is the visual HTML report showing plots of the
	QC metrics summarized in the text summary.

	summary.txt: A tab-separated file describing whether the
pass/warn/fail result for each module. If multiple files are
provided, only one summary file is generated, with one of the
columns being the file name associated to each module result.

The full list of arguments and options can be seen by running falco
without any arguments, as well as falco -? or falco –help. This
will print the following list:

```
Usage: falco [OPTIONS] <seqfile1> <seqfile2> …
Options:



	-h, --help

	Print this help file and exit



	-v, --version

	Print the version of the program and exit



	-o, --outdir

	
	Create all output files in the specified
	output directory. FALCO-SPECIFIC: If the
directory does not exists, the program will
create it. If this option is not set then
the output file for each sequence file is
created in the same directory as the
sequence file which was processed.






	--casava

	[IGNORED BY FALCO] Files come from raw
casava output. Files in the same sample
group (differing only by the group number)
will be analysed as a set rather than
individually. Sequences with the filter flag
set in the header will be excluded from the
analysis. Files must have the same names
given to them by casava (including being
gzipped and ending with .gz) otherwise they
won’t be grouped together correctly.



	--nano

	[IGNORED BY FALCO] Files come from nanopore
sequences and are in fast5 format. In this
mode you can pass in directories to process
and the program will take in all fast5 files
within those directories and produce a
single output file from the sequences found
in all files.



	--nofilter

	[IGNORED BY FALCO] If running with –casava
then don’t remove read flagged by casava as
poor quality when performing the QC
analysis.



	--extract

	[ALWAYS ON IN FALCO] If set then the zipped
output file will be uncompressed in the same
directory after it has been created. By
default this option will be set if fastqc is
run in non-interactive mode.







	-j, --java

	
	[IGNORED BY FALCO] Provides the full path to
	the java binary you want to use to launch
fastqc. If not supplied then java is assumed
to be in your path.






	--noextract

	[IGNORED BY FALCO] Do not uncompress the
output file after creating it. You should
set this option if you do not wish to
uncompress the output when running in
non-interactive mode.



	--nogroup

	Disable grouping of bases for reads >50bp.
All reports will show data for every base in
the read. WARNING: When using this option,
your plots may end up a ridiculous size. You
have been warned!



	--min_length

	[NOT YET IMPLEMENTED IN FALCO] Sets an
artificial lower limit on the length of the
sequence to be shown in the report. As long
as you set this to a value greater or equal
to your longest read length then this will
be the sequence length used to create your
read groups. This can be useful for making
directly comaparable statistics from
datasets with somewhat variable read
lengths.







	-f, --format

	Bypasses the normal sequence file format
detection and forces the program to use the
specified format. Valid formats are bam, sam,
bam_mapped, sam_mapped, fastq, fq, fastq.gz
or fq.gz.



	-t, --threads

	[NOT YET IMPLEMENTED IN FALCO] Specifies the
number of files which can be processed
simultaneously. Each thread will be
allocated 250MB of memory so you shouldn’t
run more threads than your available memory
will cope with, and not more than 6 threads
on a 32 bit machine [1]



	-c, --contaminants

	Specifies a non-default file which contains
the list of contaminants to screen
overrepresented sequences against. The file
must contain sets of named contaminants in
the form name[tab]sequence. Lines prefixed
with a hash will be ignored. Default:
Configuration/contaminant_list.txt



	-a, --adapters

	Specifies a non-default file which contains
the list of adapter sequences which will be
explicity searched against the library. The
file must contain sets of named adapters in
the form name[tab]sequence. Lines prefixed
with a hash will be ignored. Default:
Configuration/adapter_list.txt



	-l, --limits

	Specifies a non-default file which contains
a set of criteria which will be used to
determine the warn/error limits for the
various modules. This file can also be used
to selectively remove some modules from the
output all together. The format needs to
mirror the default limits.txt file found in
the Configuration folder. Default:
Configuration/limits.txt



	-k, --kmers

	[IGNORED BY FALCO AND ALWAYS SET TO 7]
Specifies the length of Kmer to look for in
the Kmer content module. Specified Kmer
length must be between 2 and 10. Default
length is 7 if not specified.



	-q, --quiet

	Supress all progress messages on stdout and
only report errors.



	-d, --dir

	[IGNORED: FALCO DOES NOT CREATE TMP FILES]
Selects a directory to be used for temporary
files written when generating report images.
Defaults to system temp directory if not
specified.



	-s, -subsample

	[Falco only] makes falco faster (but
possibly less accurate) by only processing
reads that are multiple of this value (using
0-based indexing to number reads). [1]



	-b, -bisulfite

	[Falco only] reads are whole genome
bisulfite sequencing, and more Ts and fewer
Cs are therefore expected and will be
accounted for in base content.



	-r, -reverse-complement

	
	[Falco only] The input is a
	reverse-complement. All modules will be
tested by swapping A/T and C/G






	-skip-data

	[Falco only] Do not create FastQC data text
file.



	-skip-report

	[Falco only] Do not create FastQC report
HTML file.



	-skip-summary

	[Falco only] Do not create FastQC summary
file







	-D, -data-filename

	[Falco only] Specify filename for FastQC
data output (TXT). If not specified, it will
be called fastq_data.txt in either the input
file’s directory or the one specified in the
–output flag. Only available when running
falco with a single input.



	-R, -report-filename

	[Falco only] Specify filename for FastQC
report output (HTML). If not specified, it
will be called fastq_report.html in either
the input file’s directory or the one
specified in the –output flag. Only
available when running falco with a single
input.



	-S, -summary-filename

	[Falco only] Specify filename for the short
summary output (TXT). If not specified, it
will be called fastq_report.html in either
the input file’s directory or the one
specified in the –output flag. Only
available when running falco with a single
input.



	-K, -add-call

	[Falco only] add the command call call to
FastQC data output and FastQC report HTML
(this may break the parse of fastqc_data.txt
in programs that are very strict about the
FastQC output format).









	Help options:
	
	-?, -help                print this help message
	
	-about

	print about message













PROGRAM: falco
A high throughput sequence QC analysis tool
```


Citing falco

If falco was helpful for your research, you can cite us as follows:

de Sena Brandine G and Smith AD. Falco: high-speed FastQC emulation for
quality control of sequencing data. F1000Research 2021, 8:1874
(https://doi.org/10.12688/f1000research.21142.2)

Please do not cite this manuscript if you used FastQC directly and not falco!

Copyright and License Information

	Copyright (C) 2019-2022 Guilherme de Sena Brandine and
	Andrew D. Smith

Authors: Guilherme de Sena Brandine and Andrew D. Smith

This is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.

This software is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

Benchmarking tools

This directory shows the script and one example output of how benchmarking was
performed. the shell files in this directory can be run given an input
directory, and will run the three compared tools, redirecting the time output
to the outs directory.

Downloading benchmark fastqs

FASTQ files can be downloaded using the fastq-dump program in the [SRA
Toolkit](https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft) (alternatively
available on [conda](https://anaconda.org/bioconda/sra-tools)).

With an active internet connection, the fastq-dump command in your PATH
variable and at least 300GB of disk space, run the following to download the
fastq files onto the test directory:
`
$ bash download_files.sh
`
QC software download links
The following tools need to be installed to run the benchmarking:

	[FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc)

	[fastp](https://github.com/OpenGene/fastp/releases)

	[HTQC](https://sourceforge.net/projects/htqc)

Command to run benchmarking
Once files are downloaded and programs are installed and added to your local
PATH variable, you can reproduce the benchmarking in the paper by running the
following three commands:
`
$./run_all_falco_tests.sh
$./run_all_fastp_tests.sh
$./run_all_fastqc_tests.sh
$./run_all_htqc_tests.sh
`

This will output the real, user and sys runtimes for each tool in each dataset.

	#### List of SRR accessions tested
	The URLS below link to the .sra file that can be then converted to
FASTQ using the fastq-dump command. Details about each dataset can
be found at https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=[srr],
where [srr] can be replaced by each accession number (e.g.

	?run=SRR1853178)
	
	[SRR10124060](https://sra-download.ncbi.nlm.nih.gov/traces/sra4/SRR/009886/SRR10124060)

	[SRR10143153](https://sra-download.ncbi.nlm.nih.gov/traces/sra68/SRR/009905/SRR10143153)

	[SRR3897196](https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-9/SRR3897196/SRR3897196.1)

	[SRR9624732](https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-15/SRR9624732/SRR9624732.1)

	[SRR1853178](https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-5/SRR1853178/SRR1853178.1)

	[SRR6387347](https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-11/SRR6387347/SRR6387347.1)

	[SRR891268](https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-5/SRR891268/SRR891268.1)

	[SRR1772703](https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-2/SRR1772703/SRR1772703.1)

	[SRR9878537](https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-15/SRR9878537/SRR9878537.1)

	[SRR6059706](https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-11/SRR6059706/SRR6059706.1)

The human genome nanopore file can be downloaded from the [Human Whole
Genome Sequencing
Project](https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-genome/rel_3_4.md)
(file
[FAB49164](http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-4045668814-FAB49164.fastq.gz))
and extracted into the tests/fastq directory

Falco results

Placeholder for falco results

FastQC results

Placeholder for FastQC results

Placeholder directory for test datasets

This directory can be used to download the SRR files.

 # falco documentation

This is the documentation for falco that uses
[mkdocs](https://mkdocs.readthedocs.io) to generate readthedocs pages.
The public web verison of this documentation is available at
falco.readthedocs.io, but for
uses who wish to see the documentation on a web browser offline, you
can build the documentation locally as described below.

Dependencies

To build the documentation locally, install mkdocs

`
pip install -U mkdocs
`

Local compilation

Build the HTML documentation by running
`
mkdocs build
`
which will create a site directory where markdown files are
converted to HTML

Create a local host for the HTML documentation by running

`
mkdocs serve
`

This will create the documentation, usually at http://localhost:8000 .

Falco

Under construction…

Contacts and bug reports

Guilherme de Sena Brandine
desenabr@usc.edu

Andrew D. Smith
andrewds@usc.edu

Copyright and License Information

Copyright (C) 2022
Guilherme de Sena Brandine and Andrew D. Smith

Authors of Falco: Guilherme de Sena Brandine and Andrew D. Smith

This is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.

This software is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

